Anti-HIV
agent as a Vaccine
In a remarkable new
advance against the virus that causes AIDS, scientists from the Jupiter,
Florida campus of The Scripps Research Institute (TSRI) has announced the
creation of a novel drug candidate that is so potent and universally effective,
it might work as part of an unconventional vaccine.
The research, which involved scientists from
more than a dozen research institutions, was published February 18 online ahead
of print by the journal Nature.
The study shows that the new drug candidate blocks every strain
of HIV-1, HIV-2 and SIV (simian immunodeficiency virus) that has been isolated
from humans or rhesus macaques, including the hard-to-stop variants. It also
protects against much-higher doses of virus than occur in most human
transmission and does so for at least eight months after injection.
"Our compound is the broadest and most potent entry
inhibitor described so far," said Michael Farzan, a TSRI professor who led
the effort. "Unlike antibodies, which fail to neutralize a large fraction
of HIV-1 strains, our protein has been effective against all strains tested,
raising the possibility it could offer an effective HIV vaccine
alternative."
Figure Showing electron micrograph of HIV particles infecting a
human T-cell
|
Blocking a Second Site
When HIV infects a cell, it targets the CD4 lymphocyte, an
integral part of the body's immune system. HIV fuses with the cell and inserts
its own genetic material -- in this case, single-stranded RNA -- and transforms
the host cell into a HIV manufacturing site.
The new study builds on previous discoveries by the Farzan
laboratory, which show that a co-receptor called CCR5 contains unusual
modifications in its critical HIV-binding region, and that proteins based on
this region can be used to prevent infection.
With this knowledge, Farzan and his team developed the new drug
candidate so that it binds to two sites on the surface of the virus
simultaneously, preventing entry of HIV into the host cell.
"When antibodies try to mimic the receptor, they touch a
lot of other parts of the viral envelope that HIV can change with ease,"
said TSRI Research Associate Matthew Gardner, the first author of the study
with Lisa M. Kattenhorn of Harvard Medical School. "We've developed a
direct mimic of the receptors without providing many avenues that the virus can
use to escape, so we catch every virus thus far."
The team also leveraged preexisting technology in designing a
delivery vehicle -- an engineered adeno-associated virus, a small, relatively
innocuous virus that causes no disease. Once injected into muscle tissue, like
HIV itself, the vehicle turns those cells into "factories" that could
produce enough of the new protective protein to last for years, perhaps
decades, Farzan said.
Data from the new study showed the drug candidate binds to the
envelope of HIV-1 more potently than the best broadly neutralizing antibodies
against the virus. Also, when macaque models were inoculated with the drug
candidate, they were protected from multiple challenges by SIV.
"This is the culmination of more than a decade's worth of
work on the biochemistry of how HIV enters cells," Farzan said. "When
we did our original work on CCR5, people thought it was interesting, but no one
saw the therapeutic potential. That potential is starting to be realized."
POSTED BY:-
Bioinformatics Depatment